Sparse Matrix Ordering Methods for Interior Point Linear

Programming
Edward Rothberg Bruce Hendrickson
Silicon Graphics, Inc. Sandia National Laboratories

Mountain View, CA 94043 Albuquerque, NM 87185

January 31, 1996
Revised September 21, 1996

Abstract

The main cost of solving a linear programming problem using an interior point method is usually the cost of
solving a series of sparse, symmetric linear systems of equations, AOATz = b. These systems are typically
solved using a sparse direct method. The first step in such a method is a reordering of the rows and columns
of the matrix to reduce fill in the factor and/or reduce the required work. This paper evaluates several
methods for performing fill-reducing ordering on a variety of large-scale linear programming problems. We
find that a new method, based on the nested dissection heuristic, provides significantly better orderings than
the most commonly used ordering method, minimum degree.

1 Introduction

An interior point method solves a linear programming problem by computing a sequence of direction vectors.
At each iteration, the method takes a step in the computed direction, moving closer to the optimal solution.
The details of the interior point method are not relevant to this paper, so we refer the reader to [21, 22] for
more information. The dominant computation in each iteration of the method is the solution of a sparse
linear system A©ATx = b to determine the step direction. The matrix ©, a diagonal matrix, changes from
iteration to iteration, while the A matrix remains constant. The linear systems are typically solved by
factoring the matrix M = AOAT into M = LDL”, where L is lower triangular and D is diagonal. The
solution vector « is then computed by solving Lz = b for z, then Dy = z for y, then L7z = .

When matrix M is factored into LDL”T | the factor matrix L suffers some amount of fill: L;; entries
become non-zero where the corresponding M;; are zero. Fill in the factor matrix can be quite substantial —
a b0-fold increase in non-zeroes is not uncommon. The amount of fill is strongly influenced by the ordering
of the rows and columns of M; factoring a permuted matrix PM PT | where P is a permutation matrix,
can dramatically reduce the amount of work required for the factorization. Finding the optimal ordering is
an NP-complete problem, so the matrix is typically reordered using a heuristic. The most commonly used
heuristic is minimum degree ordering [12, 24, 30]. Variants of minimum degree include Quotient Minimum
Degree (QMD) [11], Multiple Minimum Degree (MMD) [20], and Approximate Minimum Degree (AMD) [1].

Minimum degree ordering is not the only available ordering heuristic. One important alternative is
nested dissection [10, 11]. While early implementations of nested dissection (specifically Automated Nested
Dissection) were much less effective than minimum degree, recent developments have changed this situation.
Better methods for finding graph separators, which form the basis for nested dissection ordering, are now
available. Examples include spectral methods [27, 28], multi-level Fiduccia-Mattheyses methods [7, 8, 14,
17, 18], and vertex-separator Fiduccia-Mattheyses variants [4, 15].

The most widely used ordering method in interior point linear programming today is multiple minimum
degree ordering. This paper looks at five other ordering methods, investigating whether any of them offers
significant advantages over MMD for a range of large-scale linear programming problems.

2 Sparse matrix ordering

This section describes the minimum degree and nested dissection ordering methods, including discussions of
the variants we explore in this paper. All of the ordering methods we consider are most easily described in
terms of the graph representation GG of matrix M. Graph G has n vertices; where n is the number of rows
and columns in M. There is an edge between vertices ¢ and j in G for every non-zero M;; in M. The degree
of a vertex in (G is equal the number of edges incident to that vertex. The sparse factorization is performed
as a sequence of n elimination steps, where in each step ¢, vertex ¢ is removed from the graph GG and edges
are added so that all neighbors of vertex ¢ become adjacent in the new graph. The edges that are added
represent fill in the factor matrix.

2.1 Minimum degree ordering

The first method we consider 1s minimum degree ordering. The intuition behind this method is quite simple.
Since the elimination of a vertex causes its neighbors to become adjacent, minimum degree always chooses
a vertex of minimum degree to eliminate next. Unfortunately, this very simple idea has historically proven
to be quite difficult to implement efficiently [12]. Early implementations (e.g., Quotient Minimum Degree
(QMD)) required enormous runtimes. Fortunately, several variants of minimum degree ordering have since
been developed whose runtimes are quite reasonable in comparison to the cost of the subsequent factorization.
We study three such variants. The first, Multiple Minimum Degree (MMD) [20], reduces the runtime of the
algorithm by eliminating a set of vertices of minimum degree simultaneously. This multiple elimination
technique dramatically reduces the cost of updating the degrees of the neighbors of eliminated vertices, the
main cost of the algorithm. Whereas QMD must update neighbor degrees each time a vertex is eliminated,
MMD will often eliminate many neighbors of a vertex before updating that vertex’s degree.

The second method we consider is a recent variant of minimum degree, called Approximate Minimum
Degree (AMD) [1]. AMD further reduces runtime by computing an inexpensive upper bound on a vertex’s
degree rather than the true degree. Another recently proposed variant of minimum degree, Approximate
Minimum local Fill (AMF) [29], improves on minimum degree by modifying the strategy used to select
vertices for elimination. The method uses a rough approximation of the fill that would be generated by
eliminating a vertex rather than using the vertex degree. The runtime of AMF ordering is only slightly
higher than that of AMD ordering.

2.2 Nested dissection ordering

Nested dissection takes a very different approach to ordering a sparse matrix. Whereas minimum degree
considers very local information about the graph G (vertex degree), nested dissection takes a more global
view. Specifically, the nested dissection algorithm performs the reordering on G as follows:

e Find a vertex separator S in G (a set of vertices whose removal leaves a disconnected graph).
e Remove the vertices in S from G (and order them after the remaining vertices in G).
e Perform nested dissection on the sub-graphs that remain.

By ordering S after the remaining, disconnected sub-graphs, the nested dissection algorithm guarantees
that the sub-graphs are disconnected in the factor matrix L, thus limiting potential fill. The vertices in .S
generally form a dense sub-matrix in L, so the quality of the ordering clearly depends on the size of 5.

As mentioned earlier, several methods are available for finding vertex separators S in (. This paper
concentrates on a particular class of these methods, multi-level variants of Fiduccia-Mattheyses graph par-
titioning, that has proven to be quite effective for structural analysis and computational fluid dynamics
matrices [7, 14, 17]. The algorithms we employ here are described more fully in [15].

Multi-level methods for graph partitioning are based on the following framework. The original graph
is first coarsened, by forming a sequence of graphs, where each graph in the sequence ideally has half
the number of vertices as the previous one. Each graph in the sequence is a coarser “approximation” of
the previous graph, typically obtained by merging pairs of adjacent vertices in the large graph into single
vertices in the coarsened graph. The coarsest graph is then partitioned into two sets. This partitioning is

then projected onto the next larger graph. The projected partitioning is refined in the larger graph, using
some local improvement heuristic. The resulting partitioning is then projected onto the next larger graph.
The process continues until a partitioning on the original, uncoarsened graph is found.

The local improvement heuristic used on the coarsened graphs in the multi-level method is typically a
linear-time variant of the Fiduccia-Mattheyses graph partitioning algorithm [8, 18]. We refer the reader to
the relevant papers for details. As originally stated, the Fiduccia-Mattheyses graph partitioning heuristic
computes edge separators; it partitions the vertices of G into two sets, ' and D, attempting to minimize
the number of edges between the sets. Recall that the nested dissection method for ordering sparse matrices
requires vertex separators — it requires three sets of vertices, S, C', and D, such that C' and D have no edges
between them. A vertex separator can trivially be derived from an edge separator by choosing S to be the
set of all vertices in C' that are adjacent to vertices in D (or vice versa). Alternatively, one can use bipartite
graph matching techniques to find the minimum size vertex separator from among all vertices incident to
separator edges [25, 28]. The cost of computing the minimum cost separator from among these vertices is
quite small.

One obvious limitation of an edge separator approach to finding vertex separators is that it optimizes the
wrong objective function. The heuristic tries to minimize the number of edges between C' and D, while the
quality of the nested dissection ordering depends on the number of vertices in the derived vertex separator
S. An alternative to the use of edge separators is an approach that finds vertex separators directly [2, 19].
One can create a multi-level vertex separator method [15] that is entirely analogous to the multi-level edge
separator approach, except that it maintains three sets of vertices at each level of the graph coarsening: S,
C, and D. The local improvement heuristic then attempts to directly minimize the size of the separator S
at each level.

In our nested dissection implementation, we recursively divide the graph until the remaining sub-graphs
contain fewer than 1/32 of the original vertices. At this point, the sub-graphs are ordered using AMD. This
hybrid approach takes advantage of the ability of minimum degree methods to quickly order small domains
very effectively.

Nested dissection can be hybridized with a minimum degree method in another way [3, 15]. Once all
sub-graphs containing fewer than 1/32 of the original vertices are reordered and eliminated, minimum degree
ordering can be used to reorder the remaining separator vertices. This has the advantage of removing the
implicit and often incorrect assumption in nested dissection that a pure recursive subdivision of the problem
is best. This paper presents results from two different nested dissection approaches, one that uses the original
recursive ordering of separator vertices and another that reorders these separator vertices using AMF.

The results in [15] indicate that nested dissection methods based on vertex separators are more effective
than either multi-level edge separator nested dissection methods or minimum degree methods for structural
analysis and computational fluid dynamics problems. It 1s not at all clear, however, how such methods would
behave for linear programming problems. Nested dissection is based on geometric intuitions that might not
necessarily hold for the highly irregular problems found in linear programming. In particular, the graphs
associlated with LP matrices may not have the small separators which motivate nested dissection. There
has been some previous work applying nested dissection using edge separator methods to relatively small
LP models with mixed results [16, 17]. We now consider the behavior of a variety of ordering methods on a
suite of large-scale linear programming problems.

3 Methodology

Our study looks at 22 large-scale linear programming problems. The problem suite includes four widely
studied problems from NETLIB [9] (PILOT, PILOT87, DFL001, and PDS-20), and a variety of problems
from customer applications. This test set includes problems from telecommunications, the electronics indus-
try, satellite resource allocation, FAA aircraft slot assignment, and airline fleet models from five different
airlines. This suite was chosen to represent a cross-section of large-scale LP problems available to us, and
all were chosen before any results in this paper were generated. While airline fleet models may appear
over-represented in this problem set, in our experience this application generates a significant fraction of the
large-scale LP models currently being solved.

All matrices were extracted from CPLEX 4.0 (a commercial math programming package) after CPLEX

presolve was applied to the problems. Table 1 shows relevant information about these problems, including the
number of rows in the matrix, the number of non-zero values in the lower triangle of A© A” (in thousands),
the number of non-zero values in the lower triangle of L after applying Liu’s multiple minimum degree
ordering [20] (in thousands), and the number of floating-point operations required to perform the factorization
(in millions) after MMD ordering.

Table 1: Statistics about test matrices.

NZ in NZ in Operations
Matrix Rows A©AT (10%) L (10%) to factor (10%)
Al5 6330 192 8197 17938
DFL001 3965 42 1297 1078
FAA 103348 1234 5928 6741
TELECOM 22919 478 2593 1025
GISMONDI 11884 377 45777 278105
ELECTRONICS 16314 4524 5571 2602
RAILROAD 72291 3738 13471 6841
PDS-20 28135 158 5916 7007
PILOT 1275 58 195 51
PILOTS7 1890 116 421 179
DISTRIBUTION 22972 12425 49144 169254
MULTICOM 30259 804 197598 2283557
SATELLITE 4667 504 2388 1525
FLEET1 20003 169 11294 30239
FLEET2 60589 865 134615 975363
FLEET3 16678 289 5411 7717
FLEET4 16704 165 5394 7379
FLEET) 2256 84 1562 1761
FLEET6 16970 190 6837 11122
FLEETT 13946 254 3732 4184
FLEETS 32759 249 32196 124470
FLEET12 18835 196 4647 5560

We order our suite of matrices using the five different codes. For our MMD results, we use Liu’s im-
plementation [20]. For AMD, we use the implementation by Amestoy, Davis, and Duff [1]. For AMF, we
use our own code. We should note that this implementation is built on top of an AMD code that is less
efficient than the one by Amestoy, Davis, and Duff. The multi-level edge Fiduccia-Mattheyses (EFM) nested
dissection method is built on top of the Chaco graph partitioning package [13]. The multi-level vertex
Fiduccia-Mattheyses (VFM) nested dissection method was implemented by Hendrickson and Rothberg [15]
in a software tool called BEND. All experiments described in this paper were performed on a Silicon Graphics
R8000 Power Challenge system.

3.1 Floating-point operation counts

Table 2 shows the number of floating-point operations required to factor the A@ AT matrices for each matrix
in our suite. Note that all results are expressed relative to the operation count for MMD. Since MMD is
the most widely used method for ordering sparse matrices, such ratios hopefully make the results easier to
interpret. Note that actual floating-point operation counts can be recovered by multiplying these ratios by
the MMD operation counts in Table 1.

As can be seen from the table, AMD gives roughly comparable orderings to MMD. One can observe
minor variations from problem to problem, but this is to be expected with any ordering heuristic. These
results are consistent with those for structural analysis matrices [1]. It can also be observed from the table
that AMF produces roughly 14% better orderings than MMD. The vertex selection criteria of AMF is clearly
more effective than that of MMD and AMD.

Table 2: Floating-point operations for factorization (relative to MMD).

Edge Vertex VFM+
Matrix AMD AMF FM FM AMF
Alb 1.34 1.11 1.15 0.97 0.92
DFL001 0.94 0.89 0.89 0.64 0.65
FAA 1.04 0.97 7.20 2.19 1.06
TELECOM 0.72 0.55 0.62 0.44 0.35
GISMONDI 1.01 0.93 041 0.42 0.44
ELECTRONICS 1.01 0.80 2.39 0.74 0.75
RAILROAD 0.92 0.79 3.37 0.78 0.77
PDS-20 1.03 1.17 0.92 0.41 0.27
PILOT 0.92 0.76 1.48 0.74 0.65
PILOTS87 1.02 1.00 1.07 0.90 0.90
DISTRIBUTION | 1.28 0.51 0.24 0.21 0.20
MULTICOM 0.90 0.74 0.05 0.10 0.05
SATELLITE 0.94 1.32 1.67 1.18 1.07
FLEET1 1.12 0.96 0.91 0.66 0.51
FLEET?2 1.09 0.92 0.36 0.23 0.24
FLEETS3 0.94 0.71 1.99 0.45 0.49
FLEET4 0.83 0.71 2.50 0.39 0.38
FLEET5 1.01 1.00 1.64 1.04 1.03
FLEET®6 1.07 0.97 0.75 0.41 0.34
FLEET7 1.03 0.84 1.99 0.47 0.44
FLEETS 1.00 0.86 0.97 0.58 0.55
FLEET12 0.97 0.81 1.90 0.51 0.45
Geom Mean 1.00 0.86 1.05 0.54 0.48

Moving to the nested dissection results, we find that the multi-level edge Fiduccia-Mattheyses method
require 5% more floating-point operations than MMD on average, although the variation is quite high. On
problems DISTRIBUTION and MULTICOM, for example, this method reduces operation counts by factors
of roughly 4 and 20, respectively. For problems FAA and RAILROAD, however, the method increases
operation counts by factors of roughly 7 and 3. Overall, the method increases operation counts for 12
problems and reduces them for 10.

In contrast, the multi-level vertex Fiduccia-Mattheyses method produces consistently better orderings
than MMD. Of the 22 problems, it only produces significantly worse orderings for two (FAA and SATEL-
LITE). Clearly, the use of a vertex separator approach rather than an edge separator approach significantly
improves the behavior of the method. Overall, the vertex FM method reduces operation counts by 46%.

Performing AMF on the separators further reduces the operation counts for 17 of the 22 matrices. The
previously troublesome FAA matrix is improved dramatically. Overall, the orderings produced this way
require less than half as many floating point operations as those produced by MMD.

An obvious question at this point is why a nested dissection approach significantly outperforms minimum
degree for most of these matrices. While the answer will of course depend on the particular matrix, some
insight can be gained from considering the matrices that arise in multi-stage stochastic linear programming,
where a domain-specific nested dissection ordering outperformed MMD by a factor of 1000 [5]. The matrices
from this problem domain all contain a family of very small separators. Eliminating these separator vertices
last allows the problem to be trivially decomposed into many small sub-problems. Unfortunately, no degree
cues are available to indicate that these separator vertices should be eliminated last. MMD eliminates
these vertices early in the process, thus destroying the natural separator structure. While the multi-stage
stochastic linear programming problems were an extreme case, we suspect that many of the matrices in our
test suite contain small separators that MMD eliminates early because they lack obvious degree cues.

A second obvious question is why the multi-level vertex separator method is vastly superior to the
multi-level edge separator approach. Similar comparisons for matrices arising in structural analysis and

computational fluid dynamics indicate that a vertex approach is preferable [15], but the difference in that
setting is much smaller. Unlike the matrices from those scientific computing applications, LP matrices tend
to have highly variable degrees. If high-degree vertices are in the best vertex separator, neighboring edge
separators will generally have a large number of edges. Consequently, an edge-oriented approach will find
worse vertex separators than a vertex-oriented method.

The reader should note that while the factorization is the dominant cost in the interior point method,
it is not the only cost. Thus, the 52% reduction in operation counts would translate to a somewhat smaller
reduction in the execution time of the method as a whole.

3.2 Factor storage

The interior point method is often quite memory-intensive, and the majority of this memory is typically
used to hold the factor matrix L. Table 3 shows the number of non-zero values in the factor matrices, again
relative to MMD, for the various ordering strategies. On average, AMD produces roughly the same number

Table 3: Non-zero values in factor matrix L (relative to MMD).

Edge Vertex VFM+
Matrix AMD AMF FM FM AMF
Alb 1.14 1.05 1.09 1.00 0.97
DFL001 0.98 0.95 1.03 0.86 0.86
FAA 1.01 0.99 3.07 1.62 1.12
TELECOM 0.88 0.80 0.90 0.76 0.70
GISMONDI 1.00 0.97 0.68 0.68 0.69
ELECTRONICS 1.00 0.93 1.41 0.91 0.91
RAILROAD 0.99 0.94 1.51 0.95 0.94
PDS-20 1.02 1.05 1.05 0.68 0.59
PILOT 0.97 0.90 1.18 0.90 0.84
PILOTS87 1.00 1.01 1.10 0.99 0.98
DISTRIBUTION | 1.12 0.76 0.55 0.51 0.50
MULTICOM 0.96 0.87 0.23 0.29 0.23
SATELLITE 0.97 1.14 1.28 1.07 1.04
FLEET1 1.06 0.98 1.10 0.86 0.76
FLEET?2 1.04 0.94 0.63 0.48 0.49
FLEETS3 0.97 0.85 1.48 0.72 0.72
FLEET4 0.91 0.85 1.72 0.66 0.64
FLEET5 1.00 1.00 1.39 1.05 1.04
FLEET®6 1.02 0.97 0.91 0.69 0.62
FLEET7 1.02 0.92 1.48 0.73 0.71
FLEETS 0.99 0.92 1.07 0.77 0.73
FLEET12 0.98 0.90 1.45 0.75 0.70
Geom Mean 1.00 0.94 1.08 0.77 0.73

of non-zero values as MMD, AMF produces 6% fewer, while the multi-level edge FM method produces 8%
more. The multi-level vertex FM method produces 23% fewer, and after reordering the separators with AMF
the reduction becomes 27%.

3.3 Ordering runtimes

In an interior point method, the time required to compute an ordering using MMD is typically not a large
fraction of the total solution time. Recall that the non-zero structure of the matrix does not change from
iteration to iteration, so the ordering only has to be performed once. In contrast, the linear system A©AT
must be solved 30-60 times. One important case where ordering times become important, however, is when
the interior point method is performed on a parallel machine [6, 16, 23]. The computations associated

with the iterations of the method, including the factorization, can be readily parallelized, while ordering, in
general, is more difficult to parallelize. We should add that nested dissection orderings are often advantageous
for parallel factorization (see [26], for example). Table 4 shows runtimes for the various ordering methods,
again relative to MMD. The table shows that all of the alternatives we have considered here are significantly

Table 4: Ordering runtime (relative to MMD).

Edge Vertex VFM+
Matrix AMD AMF FM FM AMF
Al5 0.04 0.09 0.09 0.09 0.11
DFLO001 0.11 0.20 0.35 0.35 0.47
FAA 0.06 0.17 0.21 0.32 0.42
TELECOM 0.14 0.23 043 0.44 0.47
GISMONDI 0.08 0.15 0.39 0.52 0.58
ELECTRONICS | 0.11 059 0.32 0.22 0.63
RAILROAD 0.11 0.13 0.19 0.19 0.24
PDS-20 0.01 0.01 0.02 0.01 0.02
PILOT 0.16 0.42 0.69 0.79 0.92
PILOTS87 0.11 0.16 0.46 0.54 0.63
DISTRIBUTION | 0.06 0.08 0.2 0.26 0.26
MULTICOM 0.03 0.06 0.07 0.08 0.10
SATELLITE 0.07 0.18 2.36 2.72 2.74
FLEET1 0.08 0.0b 0.14 0.15 0.17
FLEET2 0.03 0.04 0.11 0.10 0.12
FLEET3 0.10 0.14 0.25 0.28 0.31
FLEET4 0.09 0.10 0.16 0.18 0.20
FLEETbH 0.04 0.08 0.21 0.15 0.20
FLEETG6 0.16 0.15 0.39 0.44 0.47
FLEET7 0.10 0.14 0.26 0.27 0.31
FLEETS 0.0 0.08 0.14 0.15 0.20
FLEET12 0.19 0.06 0.34 0.33 0.32
Geom Mean 0.07 0.11 0.23 0.24 0.29

less expensive than MMD. AMD reduces ordering times by an average factor of fourteen for this suite of
large problems. AMF reduces ordering times by a factor of nine. Interestingly, the nested dissection methods
reduce ordering times by roughly a factor of four, even though these same methods significantly increase
ordering times over MMD for structural analysis and CFD problems [15].

Upon further investigation, we discovered several properties in these linear programming matrices that
can cause large runtimes in MMD when compared with structural analysis and CFD matrices. The first
is that linear programming problems often have many vertices with very high vertex degrees. In problem
FLEET12, for example, the matrix contained 18835 vertices, and one vertex had degree 18699. Nearly
every elimination step in the MMD algorithm removes a neighbor of this high-degree vertex, so the degree
of this high degree vertex must be updated. The degree update requires a very expensive traversal of the
full adjacency list. FLEET12 was an extreme example, but we observed many high-degree vertices in the
matrices in our test set. In contrast, vertex degrees in structural analysis and CFD problems are generally
quite low and relatively uniform.

Another reason for large MMD runtimes for these problems is that multiple elimination is less effective
than it is for structural analysis matrices. Recall that MMD reduces runtimes by simultaneously eliminating
multiple independent nodes of minimum degree. For LP matrices, we found that the higher variability
in node degree limits the number of vertices of minimum degree. We also found that the vertices in LP
matrices are more interconnected than those in structural analysis matrices, which reduces the number of
these minimum degree vertices that are independent. The result is that fewer vertices are eliminated in
each multiple elimination stage for linear programming matrices than for structural analysis matrices. This
increases the cost of the MMD algorithm.

4 Conclusions

This paper has considered the question of how linear programming matrices should be ordered prior to
factorization. The most widely used reordering scheme for this problem is multiple minimum degree (MMD)
but our results indicate that this is no longer the appropriate choice. Approximate minimum degree produces
orderings of equivalent quality while running more than an order of magnitude faster. Approximate minimum
local fill reduces floating point operations by 14%, while still running 9 times faster than MMD. And a nested
dissection approach based on a multi-level vertex Fiduccia-Mattheyses partitioning scheme reduces floating-
point operations by more than a factor of 2, reduces storage requirements by 27%, and reduces ordering
runtimes by roughly a factor of four.

Acknowledgements

The authors would like to thank Bob Bixby and Irv Lustig of CPLEX Optimization for providing access to
many of the large linear programming models studied in this paper.

References

[1] Amestoy, P., Davis, T., and Duff, 1., An approzimate minimum degree ordering algorithm, Technical
Report TR-94-039, University of Florida, December, 1994.

[2] Ashcraft, C., and Liu, J.; A partition improvement algorithm for generalized nested dissection, Technical
Report BCSTECH-94-020, Boeing Computer Services, 1994.

[3] Ashcraft, C.; and Liu, J., Robust ordering of sparse mairices using mullisection, Technical Report
ISSTECH-96-002, Boeing Information and Support Services, 1996.

[4] Ashcraft, C., and Liu, J., Using domain decomposition io find graph bisectors, Technical Report
ISSTECH-95-024, Boeing Information and Support Services, 1995.

[5] Berger, A., Mulvey, J., Rothberg, E., and Vanderbei, R., Solving multistage stochastic programs using
tree dissection, Technical Report SOR-95-07, Dept. of Statistics and Operations Research, Princeton
University, June, 1995.

[6] Bisseling, R., Doup, T., and Loyens, L., “A parallel interior point algorithm for linear programming on
a network of transputers”, Annals of Operations Research, 43: 51-86, 1993.

[7] Bui, T, and Jones, C., “A heuristic for reducing fill in sparse matrix factorization”, Sizth SIAM Con-
ference on Parallel Processing for Scientific Computing, 1993.

[8] Fiduccia, C., and Mattheyses, R., “A linear time heuristic for improving network partitions”, in Pro-
ceedings of the 19th IEEE Design Automation Conference, pp. 175-181, 1982.

[9] Gay, D., “Electronic mail distribution of linear programming test problems”, Mathematical Programming

Society (COAL) Newsletter, 1988.

[10] George, A., and Liu, J., “An automated nested dissection algorithm for irregular finite element prob-

lems”, SIAM J. Numer. Anal., 15: 1053-1069, 1978.

[11] George, A., and Liu, J., Computer Solution of Large Sparse Posilive Definile Systems, Prentice-Hall,
1981.

[12] George, A. and Liu, J., “The evolution of the minimum degree ordering algorithm”, STAM Review,
31:1-19, 1989

[13] Hendrickson, B., and Leland, R., The Chaco User’s Guide: Version 2.0, Sandia National Laboratories
Technical Report SAND94-2692, October, 1994.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

Hendrickson, B., and Leland, R., “A multilevel algorithm for partitioning graphs”, in Proceedings in
Supercomputing '95, November, 1995.

Hendrickson, B., and Rothberg, E., Improving the runtime and quality of nested dissection ordering,
Technical Report SAND96-0868J, Sandia National Laboratories, March, 1996.

Karypis, G., Gupta, A., and Kumar, V., “A parallel formulation of interior point algorithms”, in
Proceedings of Supercomputing "94, pp. 204-213, November, 1994.

Karypis, G., and Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs,
Technical Report 95-035, Department of Computer Science, University of Minnesota, 1995.

Kernighan, B., and Lin, S., “An efficient heuristic procedure for partitioning graphs”, Bell System
Technical Journal, 29: 291-307, 1978.

Liu, J., “A graph partitioning algorithm by node separators”, ACM Trans. Math. Software, 15(3):
198-219, 1989.

Liu, J., “Modification of the minimum degree algorithm by multiple elimination”, ACM Trans. Math.
Software, 11, pp. 141-153, 1985.

Lustig, I., Marsten, R., and Shanno, D., “Computational experience with a primal-dual interior point
method for linear programming”, Linear Algebra and Its Applications, 152: 191-222, 1991.

Lustig, I., Marsten, R., and Shanno, D., “Interior point methods for linear programming: computational
state of the art”, ORSA Journal on Computing, 6(1): 1-14, 1994.

Lustig, I., and Rothberg, E. “Gigaflops in linear programming”, to appear in OR Letters.

Markowitz, H., “The elimination form of the inverse and its application to linear programming”, Man-

agement Science, 3: 255-269, 1957.

Pothen, A., and Fan, C.; “Computing the block triangular form of a sparse matrix”, ACM Trans. Math.
Soft., 16(4); 303-324, December, 1990.

Pothen, A., Rothberg, E., Simon, H., and Wang, L., “Parallel sparse Cholesky factorization with spectral
nested dissection ordering”, in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra,
pp- 418-422, June, 1994.

Pothen, A., Simon, H., and Liou, K., “Partitioning sparse matrices with eigenvectors of graphs”, SIAM
Journal of Matriz Analysis and Applications, 11(3): 430-452, 1990.

Pothen, A., Simon, H., Wang, L., and Barnard, S., “Towards a fast implementation of spectral nested
dissection”, Proceedings of Supercomputing '92, pp. 42-51, 1992.

Rothberg, E., “Ordering sparse matrices using approximate minimum local fill”, Silicon Graphics
manuscript, submitted for publication, April, 1996.

Tinney, W., “Comments on using sparsity techniques for power system problems”, in Sparse Matriz

Proceedings, IBM Research Report RAT 3-12-69, 1969.

